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The moving finite element (MFE) method has been reduced to practice in the automatic 
solution program DYLA for general systems of transient partial differential equations (PDEs) 
in I-D. Several test examples are presented which illustrate the unique node movement and 
systematic control features which are intrinsic in the MFE method. Computational dilemmas 
of numerical diffusion, Gibbs overshooting and undershooting! zone tangling, and grid remap 
(or re-connection) aliasing, which occur frequently in conventional PDE methods, are essen- 
tially eliminated in the MFE method. Arbitrarily large gradients (or shocks) can be solved 
with extremely high resolution and accuracy for non-coincident, or even counterdirected, 
propagating wavefronts. Boundary layers of arbitrarily small dimensions are solved with high 
accuracy simultaneously with the large-scale structures in reactive and non-reactive fluid 
calculations. The MFE method requires a small fraction of the grid nodes which are used in 
conventional PDE solution methods because the nodes migrate continuously and 
systematically to those positions where they are most needed in order to yield accurate PDE 
solutions on entire problem domains. Courant-Friedrichs-Lewy time-step limits are exceeded 
by wide margins (by factors of two to several thousand). Finally, the extension of the MFE 
method to 2-D is briefly discussed. 

Contents. Introduction. I. The Moving Finite Element Method. II. Sample Problems and Results. 
III. Looking Ahead. Appendix. References. 

INTRODUCTION 

This article presents some promising advances in the automatic solution of partial 
differential equation (PDE) systems for general scientific applications. The advances 

* This research was supported by the Basic Energy Science Office of the Department of Energy under 
Contract ER-78-C-03-2078. 
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which we report result from the reduction-to-practice of a moving finite elerne~~ 
(MFE) method which was initially introduced by Miller and Miller [l] and subse- 
quently improved and extended by Miller [2]. 

In the MFE method, both nodal amplitudes and nodal positions move continuously 
with time in such a way as to satisfy simultaneous ordinary differential equations 
(ODES) which minimize PDE residuals. The computational experience with this 
approach is that the nodes generally move to those regions where they are most 
needed in order to resolve PDE solutions with high accuracy. C~nve~t~o~~~ 
numerical dilemmas of numerical diffusion and Gibbs overshooting and 
undershooting have been essentially eliminated by the MFE method in Eulerian 
calculations, and Eagrangian zone tangling and/or re-map aliasing are not present, 
either conceptually or practically, in the MFE solution of PDEs. Furthermore, the 
general integral nature of the MFE method has proven to be very amenable to the 
practical formulation of automated PDE solvers, such as the DYLA program which 
is described in this article. We note further that many of the key factors which :ed to 
very successful developments of automatic ODE solvers for stiff systems during 
recent years 13-5 ] are now becoming visible in our PDE developments as well; so iet 
us review briefly some of these factors and note their logical extensions in the case of 
PDE systems. 

The resolution of dilemmas posed by stiffness was pivotal to the remarkable 
advances which have occurred in semi-automatic numerical solution methods for 
ODEs during the past 5-10 years. Recall that, in ODE systems: stiffness is encoun- 
tered when relaxation time constants of greatly disparate magnitudes are presem 
simultaneously, making numerical stability and accuracy more difficult to achieve 
than usual. In PDE systems similar phenomena (which we choose to also terrr: 
stiffness) will often afflict both the space and the time variables. For example, ilaime 
front behavior in coupled hydrodynamic-chemical kinetics caicufations is crn,icahy 
determined by : 

(1) chemical kinetics processes with disparate time scales; and 

(2) simultaneous chemical species and temperature profiles which possess 
spatial gradients that are disparate in both their magnitudes and their propagation 
velocities. The scales of these noncoincident gradients extend from microscopic 
regions of energy release and species mixing to the macroscopic dimensions of Large- 
scale fluid dynamics structures and system geometries. 

Detailed physical and chemical understanding of such systems naturally depends 
greatly upon one’s capacity to resolve satisfactorily the r-tow extended stiffness 
problem in both space and time. 

A second key factor which stimulated the recent burst of developments in ODES 
was the appearance of C. W. Gear’s implicit multi-step method [3]. The fact tnat 
Gear’s method managed to yield numerical solutions to stiff ODE systems was, 
however, not the single most important factor in its success; for other methods such 
as implicit Runge-Kutta methods were also capable of solving systems of stiff ODES 
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at the time. The most notable aspect of Gear’s contribution was the successful 
reduction to practice of a systematic control method for the numerical integration of 
stiff ODE systems in an automatic, hands-off manner. Many technical users 
discovered quickly that Gear’s method really worked for very broad classes of 
ODES-with high degrees of reliability and with a minimum of dedicated 
programming effort by the practitioner. In a word, the key to the success of Gear’s 
method was, and is, the effective maintenance of requisite levels of stability aad 
accuracy in the time domains where such control is most needed. The critical 
advance of the MFE method for PDEs is the extension of this basic feature to adjust 
automatically both the space and the time stepsizes in those critical regions where 
such control is most needed, and to allow the finely spaced nodes to move smoothly 
with the critical regions which require their presence. 

We wish to point out here certain significant differences between the continuous 
node movement properties of the MFE method and the properties of well-known 
adaptive regridding methods. We note that adaptive regridding methods are of two 
general types: 

(1) such methods as Lagrangian calculations move nodes at mean fluid 
velocities or at some other characteristic velocity in a fluid; and 

(2) alternative Eulerian regridding procedures track a fluid property such as a 
maximum fluid acceleration or a maximum density or temperature gradient, or a 
specific ignition temperature range, and insert finely spaced grid nodes into the 
immediate vicinity of the selected fluid property. (These nodes may be finely gridded 
but still spatially fixed, or they may genuinely move in tracking the fluid property.) 

In (1) the number of nodes is usually fixed, and their spatial density changes 
continuously as the problem evolves. In (2) both the number and the density of nodes 
may be adjusted according ‘to specific criteria selected by the user.’ Because most 
adaptive regridding methods are tied to a single fluid property, these methods are 
applied very successfully in problems where the most critical fluid behavior has its 
cause and effect origins associated with that fluid property which is tracked by the 
regridding method. (Of course,. in successful adaptive regridding, dependent variable 
interpolations must be well defined and performed accurately for maximum effec- 
tiveness.) In cases where critical fluid behavior propagates at dissimilar velocities 
(such as multiple travelling waves, which may additionally reflect back and forth in 
an uncorrelated manner) over entire problem domains, adaptive regridding methods 
can encounter serious difftculties. To address such difficulties, more systematic 
adaptive regridding procedures are presently under development. For example, 
Oliger’s recent work [IO] uses local truncation error estimates of finite difference 
solutions in order to determine those regions where fine grid meshes (with spatially 
fixed nodes) should be inserted at various times. This approach to adaptive regridding 

’ There are, of course, numerous variants of these two basic types of adaptive regridding methods. The 
reader can consult the following references, among others: McCormack and Paullay [6], Oran et al. [7] 
Oran et al. [8] and Dwyer ef al. [9]. 
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is promising because it has the capacity to anticipate mu!tiple regions of critical fluid 
behavior over entire problem domains on a more systematic basis than is found Im 
many other adaptive regridding methods which are currentiy in practice. 

The continuous node moving properties of the MFE method thus differ from 
adaptive regridding methods in several major respects: (I) nodes are not tied to 
individually tracked fluid properties, (2) nodes are not inserted or removed (although 
the creation and annihilation of extra MFE nodes might be advantageous in certain 
instances, and could be smoothly accomplished; see Section 14 of Ref. [2] for some 
discussion of this possibility), and (3) node coordinates and node amplitudes are 
calculated simultaneously at each time step from a system of ordinary differentia! 
eqtiations which are derived so as to minimize the PDF residuals on the entire 
problem domain. Accordingly, the MFE method tends to be highly systematic and 
anticipatory in locating nodes where they are most needed in order to resolve 
critically distributed fluid properties with high accuracy over entire problem dora?ains, 
Lagrangian remapping and other interpolation methods which are required for 
moving and/or inserting nodes in adaptive regridding methods are eliminated in t!le 
-MFE method. The practical effects of these MFE node movement properties wiiE be 
considered in numerous detailed examples in subsequent sections of this article, 

Finally, we note that broad families of PDE systems can now be integrated stabiy 
and accurately in a semi-automatic format by the MFE method. The mechanics oi 
formulating a user-ready program which automatically reads, compiles. and soives 
arbitrary sets of PDEs is, of course, considerably more cornpIes than in the case of 
CbDEs because a much broader family of operators appears in PDEs than m iZDEs. 
But these compIexities have been largely resolved in the DYLA program and we 
shall see by examples of PDE systems in later sections that very effective automatic 
solution is now available for general scientific use. A notable beaefit which is 
expected from this new capability is the elimination of a great deal of non-essential, 

E programming which currently prevails in scientific and engineering 
practice. Et is our hope that such an advance in PDE solution methods iz:i’;l 
increasingly permit valuable human resources to be redirec:ed away from ted&s 
numerical programming chores and into those channels where creative energy can 5e 
applied much more profitably to the technological problems which practiticners 
initally set out to solve. 

1. THE MOVING FINITE ELEMENT METHOD 

In order for this article to be read independently, we present in this section a brief 
sketch of the development of the MFE equations. Derivations which are more 
detailed in their discussion of rigorous mathematicai foundations can be developed 
from relevant literature sources [l, 2, 11, 121. 

We consider first the scalar evolution equation, 

ti = L(u), c> 0. 
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where u(t), for each time t, is an element of the Hilbert space 3 = Y2[0, 11; and 
L(U) is some nonlinear partial differential operator. In the usual finite element 
approach, one looks for an approximate solution v to Eq. (1) which is restricted to lie 
in a linear finite-dimensional subspace A CZ with basis functions aj, j = l,..., n. 
For example, one can take J? to be the space of continuous piecewise linear 
functions with given Jixed nodal locations sj and variable nodal amplitudes aj. The aj 
are then the familiar triangular basis functions. We write 

v(t) = 2 aj(t)aj. 
j=l 

(2) 

The coefficients aj are determined from the requirement that d -L(U) be orthogonal 
to JY, resulting in the following system of ordinary differential equations: 

s (q, aj)dj= (ai, L(V)), i = l,..., n. (3) 
.i 

The generalization that the MFE method provides is to allow nonlinear spaces J’ 
of approximation functions. For example, ~7’ may now be taken to be the space of 
continuous piecewise linear functions with both the nodal amplitudes aj and the nodal 
positions sj being variable. (We will see later that, when one forces the MFE nodal 
positions to remain fixed, the MFE method reduces to the classical finite element 
method.) Thus in the MFE approach, the approximate solution, 

v(t) = f&,(t),..., a,(f), sl(4..., s,(G), (4) 

is now restricted to lie in the nonlinear manifold A’ CZ which is parametrized by 
the 2n parameters a, ,..., a,, s1 ,..., s,, with (a,1 < 
Application of the chain rule leads to the following 
argument t suppressed): 

ti = z djaj + ijpj, 

j 

where the functions ai and ,8,(x) are defined by 

av 
aj=q’ 

p,=g. 
J 

co and s,<s,<...<s,. 
expression for ti (with the 

(5) 

(W 

(6b) 

That is, d is restricted to lie in the tangent space gU to A’, at v, which is spanned by 
the basis functions a,, a2 ,..., a,, /3,, & ,..., p,, [ 1,2]. 

In a manner similar to the usual finite element method, one now derives a system 
of ODES for aj and sj by requiring that the residual function R 3 L; -L(v) be perpen- 
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dicular to KU, i.e., be perpendicular to all the basis functions. This is easily seen to be 
equivalent to the requirement that the 9’ norm of R be minimized with respect to 
variations of all cii and ii. We see that 

(R, R) = (ti, ti) - 2(& L(v)) + (L(v). L(Z!)) 

By differentiating this expression with respect to di and ii, we get the equations 
(a/i%,)(R, R) = 2(ai, R) = 0, (~?/as’~)(R, R) = 2(/?,, R) = 0, i = I,... s n. In other words, 
we have the 2n ordinary differential equations for d:(t) and ii(t) 

So far, we have made reference to the possibility of rather general nonlinear spaces 
J’ of approximation functions; however, for the remainder of this article we refer 
only to the space of continuous piecewise linear approximation functions with 
variable nodal amplitudes and positions.’ The choice of approximation space yields 
the basis functions czj(x) and p,(x). The function aj(xj is that continuous piecewise 
linear function which takes the value I at the node sj and the value 0 at ah the other 
nodes, i.e., aj is the usual triangular basis function 

aj(x) = (x - sj- ,)/Asj, 

= 1 - (X - Sj)/ASj+ 1) 

= 0, 

sjpa <x < Sj> 

sj < x < s,,, , , 

elsewhere, 

where Asj E sj - sj-, is the width of the jth cell [sj- r, sj] to the left of the jth node, 
To derive the basis function /Ij in Eq. (6b) we notice that, on the jth ceil [So-! j ,sij, 

the piecewise linear function v can be written as 

v=aj-I+mj(x-sj_,), (10) 

where mj s (a, - uj- I)/(sj - sj- 1) is the slope of G in the jth cell. It follows that, for 
x E [s~-~, sj), (t%/d~~)(~) = -mjaj(x). Likewise for x E (Sj, sjL r], (av/asj)(-~) I= 

* The generalization to higher order moving finite element spaces such as quadratic or cubic spikes is 
easily accomplished (21. (The general MFE method even allows such higb!y unusual nonlinear moving 
finite elements as the “moving vorticity blobs” of Doss and Miller [13j.) However, we will see in the 
present article that piecewise linear approximating functions are surprisingiy potent in practicai 
applications of the MFE method, in addition to their simplicity for illustrating the basic features of the 
MFE method. 

581/4O;‘I-14 
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-mj+ I uj(x). Therefore, c~v/&, has a simple discontinuity at sj because &/asj takes 
the values -mj and -mj,r 
given by (also see Fig. 1): 

at Sj - 0 and Sj + 0, respectively. To summarize, p,(x) is 

pj(wX) = -mjcCj(X), Sj-1 Gx < Sjv 

= -mj+ 1 aj(x)3 sj<x-<Sj+l, (11) 

= 0, elsewhere. 

Because each basis function has support in only two cells, the contribution to the 
summations in the canonical Eqs. (8a) and (8b) come only from those terms with 
indices j = i - 1, i, and i + 1. To write Eqs. (8) in a more compact vector form, the 

aj 
.I. 

Slope m j  

v(x,t) 
aj-l 

-k 

Slope m.  
.I+1 

. 
aj+l 

1.0 . 

Uj(X) 

k 
'j-1 'j 'j+l 

-"'j+l 

Bj(X) i 

mmj t 

. 

-& 
‘j-1 ‘j 'j+l 

. 

FIG. 1. Graph of u(x, t) and the MFE basis functions a,(x) and fi,(x). 
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variables a, I...Y pi,) s,,..., s, can be reordered, and the column vector J’(I) of the 
~nk~~own parameters for the approximant u(x, t) is given by 

4’ 3 (al) St )...) ai, Si,..., ff,, S,)T. 
(12’ 

Equations (8) then takes the form 

where A is an n x r~ block-tridiagonal matrix, which we write for 11 = 5 as, 

At B, 0 0 0 
C, A, B2 0 0 

A= 0 C, A, B, 0 (14) 
0 0 C, A, B, 
0 0 0 C, A, 

The ith lower block Ci, diagonal block A i, and upper block B, are the 2 x 2 
matrices: 

c,= Cai¶ ai-l) Cai~Pi-ll i=2...,,n. 
I 

( !  Gaflai-l) cOi,Pi-1) ’ 

A,= (ai,ad tai.Pi) ’ 
I 

i @ivail (PiTPi) 1 ’ 

i= I %..*7 .?I, 

*.= (af,ai+l) iai,Pi+l) 
L 

( 1 Vi, a,+J cOi7PiCLl ’ 

i = I,..., rz - I. 

; ?I%‘! 

(1501 

Finally, the (2i - l)st and the (2i)th elements of the vector valued function go?) are 

Let us now discuss briefly the necessary extensions of the MFE method to sclve 
the PDE (I ) when u and L are vector-valued functions, i.e., when Eq. (I) is a system 
of PDEs.” Suppressing all arguments x and t, we write u = (u’, u’~.~.. ;iPji 
L = (L’, L2 ,..., Lp), and u = (v’, o2 ,..., 0”). For the sake of simplicity in equation 
structure, we require that all components of the approximating function L’ share one 
and the same set of nodes. Each component function P’I, I = l,..., p is a continuous 

’ Extemions of the MFE method to systems of PDEs in 1-D has also been made by Djomehrl j 14! s 
the code MFElDS; there has. in fact, been a mutualiy beneficial sharing of experience Ir. the 
developments of DYLA and MFEl DS. 
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piecewise linear function, with nodal amplitudes aJ! sharing the common nodal 
positions sj. As in the scalar case, we then have 

v’ = C ajaj, 

where aj is defined in Eq. (9), and /3J! is given by 

p,!(x) = -mjaj(x), Sj(X < Sj, 

= -mi+ I aj(x), sj<x<sj+l, 

=o elsewhere, 

(17) 

(19) 

where rnj is the slope of the function v’ on the jth cell, 

mJ! = (a,! - a,!_ ,)/(sj - sj- 1). (20) 

As in the scalar case, a system of ordinary differential equations of 6,! and ~j is 
derived from the minimization problem: 

minimize )I( ti - L(v)l/l’ 

with respect to variations of all Lif, ii, 

l<i<n, l<I<p. (21) 

The square of the norm I() )I( is e ine as a weighted sum of the square of the Y2 d f d 
norms of the Ith residual (ti’ -L’(v)), for I = l,..., p, or 

for some suitable constant weights We, Z= l,...,p. 
To write the minimization problem (21) in a more concise vector form, let y(t) be 

the n x (p + 1)-dimensional column vector of the unknown parameters of the approx- 
imating function v, i.e., 

4’ 3 <a: )...) a;, sl; a; ,...) a;, s2; . - * ; a; )...) a;, s,)? (23) 

One can view y as being composed of n segments (corresponding to the number of 
nodes), in which the ith segment consists of p + 1 elements which are simply the 
amplitudes and nodal position at the ith node. 

By using these notations and the basic logic which was discussed for the scalar 
case, Eqs. (18), (21), and (22) lead to the following system of ODES (written in the 
matrix form): 

d(Y)j = 8(Y), (24) 
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where & is an n x n block tridiagonal matrix whose ith lower, diagonal, and upper 
blocks are denoted by Cl, A i, and Bi, respectively. Defining the p + 1 by p f i 
matrix D,.,i by 

the blocks Ci, A i, and Bi are then given by 

CjEDi,i-[, Ai = Di,i, and Bi=Diqitl. 

The ith segment of the right-hand side ~(4’) consists of the elements 

t 
(ai, L’(v)) ,..., (ai, L”(o)), i w,@lpl, L’(c))) . 

I=1 ! 

Remarks 

(25) 

@ From Eqs. (26) and expression (27) (as well as Eq. (-?I) which appears behow) 
we see that the weights wI, for I= l,..., p, appear explicitly only in the s’ equations in 
(24): and they accordingly influence only the node motion For example, giving ihe 
Ith component u! a very large weight, while giving only very small weights to the 
remaining components, has the effect of forcing the nodes to i6foll~w” only the ith 
component. 

e As was mentioned earlier, all components of the piecewise linear vector valued 
function t‘ are required to share the same nodal positions. One could have chosen 
instead to associate with each component function vi a different set of nodes .st,...l 3: 
which move independently for the different components. On one hand, the resuhing 
approximation space M’ could possibly prove to be useful in solving multipie 
reactive fluid components which generate fronts of significantly different velocities 
On the other hand, the resulting equation structure would be highly complicated even 
in one dimension and could prove to be practically unmanageable in extensions to 
higher dimensions. (This, however, could be the subject of future investigationj 

@ Our choice of piecewise linear approximations complicates the evaluation of 
those inner products which involve second-order differential operators. In Eq. (1 )q if L 
is simply the second-order operator a2/L3x2, then L(v) is a sum of delta functions with 
weights (net + , - mJ at the ith node. Because delta functions do not belong to the 2’ 
space, the minimizing problem does not directly make sense for the piecewise Iinear 
approximating functions. Instead, this minimizing problem must be interpreted in the 
usual sense of “‘mollification.” That is, the manifold X’ is replaced by the manifold 
JPb of “smoothed-off’ or “&mollified” piecewise linear functions with the same nodal 
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amplitudes ai and nodal positions si. Equation (24) is then interpreted to be the 
limiting equation as S + 0. In this sense, the analysis in Ref. [ 1 ] then shows that the 
inner products vi, u,,) should be interpreted as if /Ii assumes its mean value of 
-(m, + mi+,)/2 at si. Because u,, has a delta function at si of weight m,, , - mi, the 
value of (pi, u,,) is found to be 

Cai 3 V.d = 4% + I - mi)(WZi+ 1 + mi)/2. (28) 

Similarly, since (ri takes on the value 1 at si, the same analysis gives 

(uiv Vxx)=mi+l -mi, (29) 

which is the same result that one finds when the left-hand side is interpreted in the 
usual sense of distributions; ((xi, z~,,) = -((c&, u,). The Appendix includes a list of 
formulas for the inner products which are used in the test examples of this article. 

We conclude this section with a brief discussion of the regularization of the ODES 
which are used in the MFE method. In certain instances, the mass matrix & in 
Eq. (24) may become singular. One can show that this occurs if, and only if, at some 
one node all of the component functions v[ have a straight portion to their graph (i.e., 
if for some i we have rni = mf,, for all I = I,..., p). In order to overcome this 
potential difficulty, Miller [ 1,2] introduced regularization terms into the 
minimization problem (21). This has the effect of not only keeping the resulting mass 
matrix positive definite but also penalizing the relatice motion between nodes. The 
regularization terms also provide a practical means of maintaining the numerical 
stiffness properties of the ODE system at very manageable levels-even when 
extremely non-uniform mesh configurations are encountered. The new minimization 
problem which replaces the previous one now reads 

minimize 
I 

5 HJ[ 1) d - L’(v)l12 + gE2 (EjAij - Sj)2 
I=1 I 

(30) 

with respect to variations of all df , 4,, 1 ,< i < n, 1 < I ,< p. 
In this new minimization problem cj and Sj are internodal control functions on the 

jth cell. One usually chooses sj and Sj to be positive functions of the jth cell width 
Asj which become infinitely large as Asj approaches a specified minimum value. 
(Note that sj and Sj can also be made to depend upon quantities other than Asj, 
which lends flexibility to the use of the regularization terms as multi-purpose penalty 
functions; also see the discussion in Section III.) 

The new regularized system of canonical equations is given in explicit form by: 

it1 i+ I 
2 (ai, aj)dj + C (Cli,p,!)ij = (Ui, L’(V)), 

jzi-1 jzi-l 

1 = l,..., p, @la) 
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= ~ W,dsf, Lr(v)) + EiSi - EI+ I Si+ Ir i = l,..., n. (3 Ibj 

1=1 

A simple relationship can be noted between this regularized system and the 
ueregularized system of Eq. (24). If we write the regularized equations (3 1) in the 
vector form 

then S? is obtained from &’ by simply adding to the blocks Ci, AiY and Bi at t5.e 
locations (p + 1, p + I) the quantities --of , cf + sf+ r, and --of+ 1r respectively. The 
bth segment of g consists of the elements (compare with the expression given in (27jj 
((a;, L’(v)),..., (aie LP(L’)), cyEl w,@;, L’(o)) + EiSi - fi;: Sif + 

Further Remarks 

e Miller j I J chose not to penalize absolute nodal velocities, w-hich would 52 

accomplished by adding regularization terms such as Cj (cij)’ for some small 
constant E. Such penalties applied to a degenerate node (that is, a node at which <he 
parameterization of the manifold ~7 becomes degenerate at which time the graph of 
L: is straight) would cause very non-smooth movement of thar node. Non-smooth 
YlOd ‘e movements would not promote the attainment of iarge dr’s in the time 
integration of the MFE equations. 

e Since the added regularization terms in Eq. (30) are chosen not to depend 
explicitly on cij, 1 < I < p, 1 < j < n, only the di equations (3 lb) are altered in the 
regularized system of canonical equations. The equations (3 la) are untouched by the 
regularization process: hence, for each component function u’, we have that 6’ - .L’fr~) 
is orthogonal to all linear combinations of the u;; i.e., to all continuous piecewise 
hear test fu‘unctions, 

Q The regularizing functions E and S which were used in most of this work are 
given by 

E(h) = AshT k + k,, ,’ 
I 

33a! 

S(b) = A,& k . 
1 

Since E(A) and S(As) become infinite as the cell width As approaches k, i one sees 
that k, gives a specified iower limit on the allowed distance of closest approach for 
neighboring nodes. The parameters kz. k, , and k, are usually small constants. t:t is 
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interesting to note further that, by simply assigning large values for k3 or k,, the 
MFE nodes become fixed, thereby yielding the conventional fixed node finite element 
method.) 

l The parameters k, , k,, k, , and k., provide a practical means of maintaining the 
numerical stiffness of the ODE system at levels which are readily integrated with 
implicit, stiffly stable methods. In any technical application which requires that small 
scales (e.g., those of viscous or other microscale transport processes, shocks, or 
boundary layer effects) be resolved simultaneously with much larger scales in the 
physical system, k, is simply assigned a value which would resolve accurately the 
critical physical processes. The values of k,, k,, and k,, which prevent the system 
from becoming impractically stiff and which yield efficient numerical solutions, are 
then readily determined. Results in Section II will demonstrate the effectiveness of 
this regularization feature in the solution of sample problems with unprecedented 
levels of mesh non-uniformities. We are also finding (in current research which will 
be reported at a later time) that new generations of regularization terms can be even 
more effective than our first-generation regularization terms in the solution of difficult 
PDE problems. 

l The system of ODES in Eqs. (31) is solved by the implicit, stiftly stable method 
of Gear. Further details of this implementation in the DYLA program are discussed 
in the Appendix. 

II. SAMPLE PROBLEMS AND RESULTS 

The automatic PDE solution program DYLA has been used to solve live sample 
problems with the MFE method. Sample problems have been selected in order to 
illustrate the ability of the MFE method to resolve the most troublesome numerical 
dilemmas which arise in the application of PDE solution methods; these dilemmas 
include the following effects: 

(1) Distortion of large gradients in regions of propagating wave-fronts (or 
shocks) by numerical diffusion and/or Gibbs phenomena in Eulerian calculations; 

(2) Zone tangling in colliding wavefronts or aliasing of fluid components when 
repeated remapping interpolations are applied to multi-fluid or multiple species 
distributions in Lagrangian calculations; 

(3) Excessive numbers of spatial zones and severely constrained time steps 
when stiff chemical kinetics and transport mechanisms are strongly coupled in 
reactive flow systems; and 

(4) The need for simultaneous and precise resolution of non-coincident 
gradients. (For example, flame fronts are commonly generated in which multiple 
species and energy may propagate and diffuse at individually dissimilar velocities 
relative to the mean fluid flow. These same dilemmas occur in many other physical 
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systems such as fully and partially ionized plasmas, chemical lasers, and the generai 
atmospheric circulation of Earth and other planetary and astrophysical systems.) 

Our purpose in this presentation of results is to show the reader problem runs 
which represent our early attempts with regard to the seiection of numbers of nodes, 
error constraints, minimum node separations, and other problem parameter values in 
the use of this general purpose PDE solution code. Accordingly, these results were 
obtained without laborious fine-tuning. Obviously, a great deal of optimization car, 
yet be accomplished, and in some examples we indicate alternative selections .caf 
problem parameters which are more nearly optimal than the originaiiy cited test case 
values. In view of these factors (in addition to the fact that the DYLA program itself 
has not yet been optimized to a production code version) computational timing 
comparisons between the MFE and other PDE soiurion methods are probably 
somewhat premature. Another diffkulty also impedes meaningful timing comparisons 
at the present time: many of the examples which are considered in this section have 
simply not been solved by other PDE methods with comparable levels of resolution 
and accuracy; and meaningful comparisons can be made, of course, only when iden- 
tical problem requirements have been fulfilled. In other examples, where comparable 
solutions have been achieved by alternative methods, the literature has often r;ot 
included sufficient information to determine the total CPU (central processing umt‘; 
time on an equivalent CDC 7600 basis. (Alternativeiy, operations counts are often 
not given in sufficient detail, with due allowances made for individual program and 
computer structures. to provide quantitative timing comparisons.) In the following 
discussions of MFE results we indicate the total CPU times on the Lawrence 
Berkeley Laboratory CDC 7600 computer in order to provide readers with some idea 
of easily attainable MFE computing times. However5 we can see already that. in 
many cases, optimal MFE computing times will be significantly smaller than :he 
presently cited values. 

Results of the five sample problems are now discussed on an individual problem 
basis. 

Problem 1. Propagation of a single square waw. 

Consider the test problem which has been previously discussed by Saris and Book 
ji5!: 

dP c?p 
-=--3 
at ax 

x E (0, 100) 

The gradients at the front and rear edges of the square wave are exceedingly s,ttep 
(IOJ in our example). The exact solution of Eq. (34) requires that this wave 
propagates (from left to right) at a velocity of 1.0, with no distortion of the initial 
profile. Initial conditions are 
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p(x, 0) = 0.5, 0 <x,< 0.002 

= linear, 0.002 <x,< 0.003 

= 2.0, 0.003 <x< 20.003 

= linear, 20.003 <x < 20.004 

= 0.5, 20.004 <x& 100, 

(35) 

and 11 nodes are used (see Fig. 2). Boundary conditions are 

p(0, t) = p( 100, t) = 0.5, t>o. (36) 

The inconsistent boundary condition at x = 100 and t > 79.996, is applied 
(purposely) in order to demonstrate the sensitivity of the MFE method to the 
presence of an ill-posed boundary condition. 

Results. A propagating static wave form is, in a sense, trivial for the MFE 
method. The initial node positions are obviously selected to resolve the square wave 
profile exactly. With no physical forces acting to alter the wave form at subsequent 
times, the true solution remains exactly representable as a piecewise linear function, 
and we would expect the MFE solution to move its nodes in a manner which 
continues to resolve the initial waveform accurately as it propagates across the 
interval [0, 1001. 

Figure 2 indicates that this expectation is fulfilled. A relative error (as defined in 
Ref. [ 1.51) of approximately lop6 was maintained by the use of only eleven nodes 
throughout the course of this single square wave problem. Wave distortions such as 
overshooting, undershooting, or numerical diffusion do not develop because the nodes 
continually adjust their positions to resolve stably and accurately the largest physical 
gradients in the problem. Note further that, because nodes are not allowed to cross 
each other, zone tangling does not occur. Comparisons of these MFE solutions to 
Lax-Wendroff, leapfrog, donor cell, and flux corrected transport (FCT) solutions 
with 101 nodes are shown in Fig. 3. 

This trial run used node controls which would have permitted a minimum node 
separation of k, = 10p6, with k, = 1O-5.4 Using an initial time step of 10p6, this 
problem ran to completion in approximately 105 time-step cycles; and approximately 
0.4 set CPU time was required. Note that this problem can also be solved with high 
accuracy using only the minimal number of nodes which are required to resolve the 
square wave profile. That is, using six nodes (a total of two at the boundaries and a 
total of four nodes at wave corners) only four time-step cycles and 0.01 set CPU 
time were required. In these runs, the local truncation error tolerance in the ODE 
solver was 10m3. Artificial viscosity is not used because this sample problem is well- 
posed for 0 ,< t < 79.996 in terms of finite, but large, gradients; and accurate 

4 In this and in several subsequent examples, k, = 0 and k, Q 10e6. In order to avoid repetition in our 
discussion, these parameters will be mentioned only when they have magnitudes which are different from 
the presently cited values. 
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FIG. 2. MFE solution of single square wave propagation with i i nodes. 

solutions are readily achieved by the MFE method in this interval. But for t > 79.996. 
the boundary condition is not consistent with the solutions to the hyperbolic 
equation (34). That is, at x = 100 and for t > 79.996, p cannot assume the boundary 
value of 0.5 simultaneously with other characteristic solutions for the on-coming 
square wave. We find that, at times exceeding 79.996, the square wave has 
approached the right-hand boundary so closely that: (i) the nodes are compressed to 
their minimum separation; (ii) numerical integration time steps for the MFE 
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Lax-Wendroff Leapfrog 
800 cycles 800 cycles 

p ~~~~~~~:~ i p ~~~~~~~.~ 
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r 800 cycles 
. . . . . ..Reversible FCT 

r 800 cycles 
1 2 ." zxtb 

FIG. 3. Comparison of single square wave results from alternative PDE solution methods with 101 
nodes. 

equations reduce to values of <10-15; and (iii) integration halts because the ODE 
solver cannot generate acceptable solutions to the ill-posed problem at the right-hand 
boundary. 

In a word, the MFE method has the capacity to move nodes automatically so as to 
resolve arbitrarily large gradients, without zone tangling and without wasting nodes 
in regions of weak gradients. The MFE method also demonstrates a significant 
sensitivity to ill-posed boundary conditions. 

Problem 2. Burger’s equation. 

This classic test problem is given by the equation 

g=-;Q +$J, xE(O,l). 

Solutions of Burger’s equation develop shocks of width 0( l/R), travelling at velocities 
of (u+ + u-)/2, where U, and z.- are the values of 21 just ahead of, and just behind, 
the shock front. To test the applicability of various PDE solution methods, arbitrarily 
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steep fronts can be generated by arbitrarily large values of R. Three test cases are 
considered: 

Case A. R = 103, Qnd 21 nodes are used for an inifial step-like wave. 

Initial conditions are given by 

u(x, 0) = 10.0, 0 <x < 0.100 

= linear, 0.100 < x < 0.101 (38) 

= 0. 0.101 <x< 1 

Boundary conditions are 

u(0, t) = 10, r>,o, 
(39) 

u( 1, t) = 0, f > 0. 

Case B. R = IO”, and 21 nodes are used for an initial sinusoidal waue form 

Initial and boundary conditions are given by 

and 

u(x, 0) = sin(27rx) + 0.5 sin(irx), xE [O, 11, (40) 

u(0, t) = u( 1, t) = 0, t> 0. (41 j 

Case C. R = 10J. and 3 1 nodes are used for an initial zmit impulse function. 

Initial conditions are given by 

u(x, 0) = 0, 0 q x < 0.48 

= linear, 0.48 < x < 0.52 

ZZ 1, 0.52 < x < 1.48 

= linear, 1.48<x< 1.52 

= 0, 1.52 <x < 2 

Boundary conditions are 

u(0, t) = u(2, t) = 0, t > 0. (43) 

Resuih. Burger’s equation describes the propagation of dynamic waveforms, in 
contrast to the static waveform in Problem 1. In the present examples, infinitely steep 
gradients are generated as R --+ co, and we expect that the MFE nodes will migrate to 
those regions where steep shocks are generated in the course of a waveform’s 
evolution. This expectation is verified in the test cases which are discussed 
immediately below. 
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Case A. R = 103, and 21 nodes are used for an initial step-like wave. 

The slope of the initial gradient is lo3 and the initial node locations are selected so 
that they cluster about the steep gradient. The speed of propagation is expected to be 
5 (the mean value of 10 and zero). Figure 4 shows the following results: 

l A majority of the nodes migrate into the shock front as time progresses. 

l The shock propagates at the correct speed (u = 5) until the effects of the 
boundary at x = 1 are felt. 

l At t = 0.05, the shock width is 0.002. 

l At t = 0.05, the shock gradient is v, - - 12,000 at the center of the shock. 
(The slope varies slightly from point to point within the highly resolved shock front.) 

l No wave distortion appears in the MFE solutions. Here we have used a 
minimum nodal separation of k, = lo-‘, with k, = lo-“, and a local truncation error 
tolerance of 10m3 in the ODE solver. 

l As the shock approaches the right-hand boundary at t = 0.20, a steady state 
boundary layer is formed with a thickness of approximately l/R, as would be 
expected theoretically. The magnified view of this boundary layer in Fig. 4 
demonstrates conclusively the powerful resolution and smooth time parametrization 
of the nodes as the steady state solution is approached. 

For the solution conditions which were indicated above and an initial time step of 
10e3, we find that approximately 240 time-step cycles and 1.8 set CPU time are 
required for the shock to run freely to the right-hand boundary at x = 1. An 
additional 130 time-step cycles were required to run the solution to t = 50, which is 
very much beyond the time at which steady state is established (at t z 0.2). 

The approach to steady state is particularly interesting. The shock front “feels” the 
right-hand boundary when the several nodes to the right of the shock front are 
compressed to their minimum allowable separations of lop4 by the wall at x= 1. At 
this time, the shock front is located at xz 0.98, and the time step begins to decrease 
from its large free-running values of At M 0.04. We note also that, at t g 0.17, just 
prior to “feeling” the right-hand boundary, the MFE time step exceeded the 
Courant-Friederich-Lewy condition by a factor of 2000. 

This problem can be solved just as well with any reasonable value for R. For 
example, with R = 106, a final stationary boundary layer is established with a width 
of approximately lop6 at x z 1. Of course, in this case one would permit a minimum 
node separation of less than 10e6 in order to resolve accurately, without Gibbs’ 
phenomena, the shock width of approximately 10e6 which would develop during the 
transient solution, as well as at the asymptotic boundary layer. 

Case B. R = lo4 and 21 nodes are used for an initial sinusoidal waveform. 

This example, shown in Fig. 5, demonstrates vividly the growth of a very steep 
gradient from an initial gentle gradient in the MFE solution of Burger’s equation. The 
initial node positions were distributed uniformly over the spatial interval [0, 11. 
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3 x 

MFE solution of Burger’s equation --step-l&e wave at d = 0, 21 nodes, 
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FIG. 5. MFE solution of Burger’s equation-sinusoidal waveform at t= 0. (a) Transient 
development of the MFE solution. (b) Detailed view (50X magnification) of formation of asymptotic 
boundary layer. 

Shortly after start-up the nodes migrated very effectively to the regions of sharp 
curvature in neighborhoods of steepening gradients. Because the Dirichlet boundary 
values are zero at both boundaries, the wave amplitudes damp toward the asymptotic 
value of zero at late times. These solutions were obtained with a minimum allowable 
node separation of k, = 10e4, with k, = 10e3, and a local truncation error constraint 
of 1O-3 in the ODE integrations. The lower graph in Fig. 5 presents a magnified view 
(50X horizontal magnification) of the boundary layer evolution at the right-hand 
boundary. 

These results demonstrate once again the capacity of the MFE method to resolve, 
smoothly and accurately, small scale and large scale physical processes 
simultaneously. This capacity results directly from dynamic node positioning in those 
regions where the nodes are most needed in order to minimize the PDE residuals over 
the entire space-time domain. With an initial time of 10A5, this example is solved 
completely (from t = 0 to asymptotic times) in approximately 100 time-step cycles 
and 2.4 set CPU time. 
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FIG. 6. MFE solution of Burger’s equation for an initial unit inpuise function. This solution wzs 
obtained with 31 MFE nodes, and l/R = 10e4. 
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Case C. R = IO4 and 3 1 nodes are used for an initial unit impulse function. 

This example, which was abstracted from recent work by Byrne [16] provides an 
illustration of fixed node, versus moving node, finite element solutions of Burger’s 
equation. The MFE solutions in Fig. 6‘ propagate smoothly and very accurately 
(results are reproducible to several significant figures). At times prior to t = 1, the 
slope of the leading wavefront becomes very steep; gradient magnitudes are on the 
order of 5000. At t = 1, the leading wavefront encounters the right boundary. At this 
time, the nodes compress smoothly to nearly their minimum allowable separations 
(k, = 5 x 10p5, k, = 10m3) and a boundary layer is formed with a thickness of 
approximately lop4 at the right boundary (in a manner which is very similar to 
Case B immediately above). Approximately 5.4 set CPU time and 392 cycles were 

1.4 

1.2. 
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u 0.6 t=o 
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0 1 

FIG. 7. Fixed node finite element solution of Burger’s equation for an initial unit impulse function. 
The solution was obtained with 101 fixed FE nodes and l/R = 10e4. 
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L4. 5 

required to reach t= IO in our initial solution efforts. (This particular examp-, IP 

whose exact solution remains nearly piecewise linear, can also be solved effectivel:~ 
by MFEs with many fewer nodes and many fewer time steps.) 

As indicated in Section 1, the MFE method reduces to the ciassic fixed node finite L. 

element method whenever the control parameter k, is assigned a very large value. 
Figure 7 presents such a solution for k, = 10” and 101 jfixedj nodes. As one expects, 
Gibbs overshooting and undershooting occurs because the very small scaies which 
are associated with a value of 1/R = lo-’ in the dispersion term cannot be resolved 
adequately with 101 fixed nodes. Here we note that, depending upon specific probiem 
requirements, users may or may not require extremely accurate resoluti.on of physics; 
shock front structures. In cases (also see Problem 5 below) where one does tvish to 
resolve shock structures to the same degree as the MFE soiutions in Fig. 6. as mang 

i- 1 --__ -.-.--~--__ 
0 0.2 0.4 0.6 0.8 1.0 1.2 i.4 1.6 1.5 2.0 

FIG. 8. Fixed node finite element solution of Burger’s equation for an initial unit impulse function. 
This solution was obtained with 101 fixed FE nodes and l/R = 0.005. 
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as 10,000 nodes would be required with several standard fixed node finite element 
and finite difference solution methods. As an alternative to applying impractically 
large numbers of nodes, one can increase the value of l/R to 0.005 in order to 
prevent Gibbs overshooting phenomena in this example with 101 Jixed nodes. 
Figure 8 presents fixed node finite element results which were generated by DYLA 
and by Byrne [ 161 with 101 nodes and l/R = 0.005. We observe in Fig. 8 that the 
Gibbs oscillations are no longer present; but the wavefront has been smeared to a 
significant extent. 

Problem 3. The Bucklers-Leuerett equation [ 171. 

The equation, 

(44) 

is used to describe simultaneous one-dimensional flow of two immiscible fluids 
through a porous medium, neglecting capillary pressure and gravitational forces. In 
the specific case of oil and water flowing through sand, the dependent variable, 
u(x, t), describes the water saturation of the sand, and f(u) is a flux function of the 
flowing stream. The total flow is denoted by the constant Q, and 4 is the porosity. 
The ratio Q/$ is assigned a valued of unity. We will solve the example which was 
considered previously by Concus and Proskurowski [ 171 in which 

f(u)= u2 
u* + a(1 - 24)’ * (45) 

The quantity a is the ratio of viscosities, which is assigned a value of 0.5. The 
solution of Eq. (44) is expected to develop a sharp front for the following initial and 
boundary conditions: 

xE [O, 11, (or x E [0,2] in Figs. 10 and 13) (46) 

and 

u(0, t) = 1, u,(L 0 = 0, t > 0 (or ~~(2, t) = 0 in Figs. 10 and 13). 

The number of nodes used in our MFE solutions ranges from 11 to 31. 

Results. As the Buckley-Leverett equation is written in Eq. (44), some 
fundamental physical transport processes which are described by terms proportional 
to u,, have been eliminated. As a result, the .true solutions of the inviscid hyperbolic 
Eq. (44) must develop truly infinite gradients in U, and thereafter continue to exist 
only as weak (nonclassical) solutions, whereas the actual (viscous) physical system 
would develop only finite, albeit exceedingly large, gradients in u. The weak solutions 
desired of the inviscid equation are the limits of the viscous solutions as the viscous 
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FC. 9. Solutions of the Buckley-Leverett equation by Glimm’s method with 50 fixed nodes. 

term in the PDE tends to zero. The inviscid Buckley-Leverett Eq. (44) has been 
solved previously by Glimm’s random choice method [ 171, and results appear in 
Fig. 9.’ In solving the viscous Buckley-Leverett equation, we have used the zero 
Neumann condition at the right-hand boundary (at x = 2 or at x = I) as an approx- 
imation to an out-flow boundary condition. Once agaEn we find that the MFE nodes 
migrate in their usual fashion from initial distributions to those subsequent locations 
which resolve accurately the steepening saturation fronts. The non-convex nature of 
f(s) in Eq. (45) gives great difficulties for some finite difference methods such as 
Lax-Wendroff, but it presents no difficulties in the MFE solution Likewise, Gibbs 
phenomena are not encountered in our MFE solutions because in all cases the 
minimum allowable node separation k, was maintained at a value which resolves 
adequately the smallest scales in the PDE system. Approximately 300 time steps and 
9 CPU seconds were required in initial solutions of this sample problem. (These 
figures can readily be reduced by a factor of three by using fewer Gauss quadrature 
points and alternative control parameters.) 

Figure 10 presents the basic MFE solution of the Buckley-Eeveretr equation with a 
value of 1/R = lo-” and 31 nodes on the interval [O, 21. The minimum allowable 
node separation is k, = 5 x 10e5; the short- and long-range force parameters, k: and 
k, , have respective values of 10e6 and 0.1 in this test case. At F = 0.3: the maximum 
slope of the saturation front is approximately 200. ht i = 0.5, the maximum slope is 
approximately 1000. 

’ The “‘jitter” which appears in Fig. 9 is due to statistical fluctuations in the sampling method and GO: 

to the segmental plotting jitter which appears in some of our computer graphics (e.g., Figs. IO. 1 i. ~ :3. 
f5C. ). 
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FIG. 10. MFE Solution of the Buckley-I,everett equation with l/R = IO-’ and 31 nodes. 

At this stage we ask, “Has the inviscid limit been approached with the present 
solution?” To provide an answer by direct testing, we also obtained (but do not 
include the graphs here) MFE solutions with 31 nodes for l/R = 10d5, l/R = lo-‘, 
and 1/R = IO-‘*. with the following results: 

(1) The MFE results for l/R = IO-’ and k, = 5 x 10e6 are identical to those 
which appear in Fig. 10 to within the width of the plotted lines. At t = 0.3 the 
maximum slope of the saturation front is approximately 2000, and at t= 0.5 the 
maximum slope of the front is approximately 104. 

(2) For l/R = lo-’ and k, = lo-‘, the MFE results again overlay exactly the 
plotted solutions in Fig. 10. At t = 0.3, the maximum slope of the saturation front is 
approximately 105, and at t = 0.5 the maximum slope of the front is nearly 106. 

(3) The value of l/R = lo-l2 is a computational zero for the algorithms which 
were used in our MFE solution methods on the CDC 7600 computer. For minimum 
allowable node separations of k, = IO-r3 we find that the numerical integration has 
become very stiff, and integration terminates at approximately t = 0.23 because 
matrix solutions in the MFE calculations have become ill-conditioned. This 
corresponds to the theoretical time at which an infinitely steep shock begins to form 
in the purely hyperbolic equation. 

We have thus demonstrated by explicit computations the approach of the viscid 
Buckley-Leverett equation to the inviscid limit-to the full limits of computational 
significance of the numerical algorithms and the CDC 7600. This exercise has been 
repeated with as many as 3 1 MFE nodes and with as few as 11 MFE nodes with the 
same results. 

A second pertinent question which was addressed is, “At what point does 
increasing l/R broaden the saturation front artificially (to more than the width of an 
ink line)?” Figure 11 presents the results for 21 MFE nodes on the interval [0, l] 
with l/R = 10-3. These results are identical (to within graphing accuracies) to the 
results for x E [O, 1 ] with l/R = 10P4 in Fig. 10. We observe that the Neumann 
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FIG. 11. MFE solution of the Buckley-Leverett equation with i/R = 1W’ and 21 nodes. 

boundary condition at x = 1 does not perturb the solution in Fig. 11 fr.cm the 
corresponding solution at x = 1 in Fig. 10. Figure 12 presents similar MFE solutions 
for l/R = 0.01 on the interval [0, 11; here we tinally see considerable wavefront 
broadening. We note that the wavefront broadening which appears in the random 
choice results (Fig. 9) due to positional uncertainty is intermediate between the 
wavefront slopes which result for values of Z/R = 0.01 and I/‘R = 0.001 in she MFE 
solutions (Figs. 12 and 11, respectively). 

FinaHy, we examine the effects of node density on the quality of MFE solutions. 
Figure 13 presents results for l/R = 1O-3 with only 21 nodes on the interval IO> 21. 
Comparison of these results with corresponding MFE solutions in Figs. 10 and Ii, 
which have greater node densities, indicate the potency of MFE method’s approx- 
imation properties with limited node densities. The locations of wavefronts are iden- 
tical. and variances in the approximate solutions at the corners of wavefronts lie 
equally above and below the true solutions. We expect that the solutions in Figs. 12 
and 13 are nearly optimal for such a limited number of nodes. 

Problem 4. Two counter-streaming square waves. 

This example extends Problem 1 so that [square wavei propagates from !eft to 
right, and [square wave], propagates from right to left. The relative velocity of the 
two waves is 1. We consider two basic cases: in Case A, the two waves are non- 
reacting and are expected to pass through each other undistorted; in Case 5, the two 
waves act like two distinct fluids which react with and consume each other when the 
waves intersect. 
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FIG. 12. MFE solution of the Buckley-Leverett equation with l/R = IO-’ and 11 nodes. 
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FIG. 13. MFE solution of the Buckley-Leverett equation with l/R = lo-’ and 21 nodes. 

Case A. Non-reactive square waves. 

The system of PDEs for the two non-reacting square waves is 

(47) 
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Initial conditions are 

P!(&o)=o, 0 < x < 0.002 

= linear, 0.002 <x < 0.003 

ZZ 1, 0.003 < x < 20.003 

= linear, 20.003 < x < 20.004 

= 0, 20.004 < x < 100. 

(SEi 

p&K, 0) = p1(( 100 - x). 01, 0 <x < 100. 

and 31 nodes are used. 
Boundary conditions are 

p*(O, r) = p1(100, t) = 0, 
(48) 

pz(O, t) = p,(Kn t) = 0, I > 0. 

Case B. Reactitle square waves. 

This test problem has been designed to pose the basic numerical difficulties which 
are encountered in colliding reactive jets and/or simultaneous mixing and kinetics in 
reacting eddies. Fluid 1 and fluid 2 interact to consume each other at a rate gitlen by 
kIzplpz. The system of PDEs is 

3P, - 
at= 

-Ii2 $ -- bwz, 

r 

$= 1/2?$-k,zptp1, x E (0, loo), 

with k12 = 1 in our calculations. Initial and boundary conditions for p1 and .gl are :he 
same as in the non-reacting case above. 

Results. In this problem and in the remaining sample problems our attention 
focuses on systems of PDEs. The challenges posed by PDF systems are, of course, 
more meaningful tests of numerical solution methods for ultimate applications to a 
broad spectrum of practical scientific problems. 

Case A. Non-reactive square waves. 

The most important fundamental features of the MFE method are contained in the 
results of this sample problem, as seen in Fig. 94. The situation is the following: 
Initially, the nodes move with the respective freely propagating square waves. very 
much in a Lagrangian fashion, which maintains exceedingly high resolution of the 
exact individual waveforms. As the front edges of the waves are about to intersect, 
the node behavior must change dramatically because the nodes are not permitted to 



t  = 100 

FIG. 14. Two counter-streaming square waves-non reactive case. 
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interchange relative positions with any neighbors. (The crossing of nodes would be 
tantamount to zone tangling in conventional methods, which we wish to avoid as we 
proceed to multi-dimensional MFE solutions in the future.) Instead of crossing each 
other, the MFE nodes merely approach each other more and more closely-to within 
the minimum allowable separation k,, which is specified by the user-so as to 
resolve simultaneously both of the steep wavefronts. During this stage of wave inter- 
section, the MFE solution method-in the localized region where nodes are 
colliding-operates very much in an Eulerian mode. in which the wave forms 
propagate in opposite directions through the nearly stationary (and nearly col!idicg) 

grid points. The reader should note that, at time t = 60, the two wave fronts (of the 
exact soiution) have intersected by an increment in dx of only 0.004. At this time the 
nodes which appear in Fig. 14 at x z 50 are clustered to within spatial separations of 
approximately 2 x lO-4. Therefore, the apparent single node at s zz 50 and p zz 1 
actually represents six nodes which are clustered to separations which are much less 
than the thickness of the ink line. Similarly, the apparent single node at x zz 50 21-k 

F = 0 actually represents two MFE nodes which are separated by dx = 0.006 in 
Fig. 14. 

At later times, after the waves have separated and are running freely again :he 
nodes also separate again and resume their travel with the respective waves a! their 
IWO distinctly dlQ’$rent characteristic aelocities, LT, 2 = i1/2. This MFE solutios 
demonstrates the capacity to resolve smoothly and very accurately-and without 
specialized programming or specialized coordinate transformations-the s- 
multaneous propagation of multiple fluids at multiple (vector) velocities. Further 
examples suggest that this distinctive feature of the MFE method will appiy effec- 
tively to a host of disparate scale processes in multi-dime~s~ona~~ rn~lticom~~ne~~, 
and perhaps multi-phase, reactive fluid dynamics applications. 

The present example of two intersecting non-reactive square waves was solved 
using 3 1 nodes and a minimum node separation of k, = 10-j. Tn actual practice, the 
closest distance of approach for adjacent nodes was approximately 5 x IO-‘; and this 
problem was run in approximately 1000 time-step cycles and 15 CPU seconds. This 
prob!em can be run equally well with: (i) 20 nodes in 400 time-step cycles aud :ess 
than 5 CPU second, or (ii) 10 nodes in less than 200 time-step cycles and 0.7 second 
CPU time. Since MFE nodes are not allowed to cross, a significant fraction oi” the 
computation time is spent in the region of the problem where the nodes are slowing 
down and reversing direction, as necessary. This is a Ggnificant computational cost 
which would probably be unacceptable if one wished to solve only such iir~ar 
problems as this non-reactive test case. (Accordingly, the MFE method is applied to 
this problem for iilustrative purposes only; in general practice, linear problems wou!d 
be solved by more economical methods whenever possible.) owever, rhe MFE 
method appiies equally well to non-linear reactive problems, as will be seen ir: the 

next example. 
In the present example we observed that, during the early stages when rhe waves 

were running freely toward each other. the MFE time-steps exceeded tie 
Courant-Friedrichs-dewy (CFL) condition by a factor of 3000. While the waves 



234 GELINAS, DOSS, AND MILLER 

were intersecting at the middle stages of the problem’s evolution, the MFE time step 
exceeded the CFL limit by a factor of 5; and after separation of the waves the MFE 
time step exceeded the CFL limit by factors of approximately 200. Similarly, in all of 
the previously discussed sample problems (l-3) the MFE time step exceeded the 
CFL limit by very large factors (of approximately 103). Our numerical results agree 
with exact solutions to four significant figures, using a local truncation error 
constraint of 10e3 for the ODE solver. 

Case B. Reactive Square Waves. 

We wish to consider now a visually tractable example of two chemically reactive 
species which contains many of the essential computational features of more general 
multi-component reactive fluid systems. In this example two chemical constituents are 
simulated in the collision of two initially square wave parcels of species 1 and 2 
which are streaming towards each other (as in Case A above) and reacting when the 
initial species parcels overlap. As these fluid parcels pass through each other, we 
expect to see a depletion of the reactive species due to chemical reaction. 

Figure 15 indicates that our expectations are again fulfilled. The MFE solutions 
agree with exact analytic solutions to three significant figures. The performance 
characteristics of the MFE solution for this reactive multi-component fluid example 
parallels very closely the non-reactive example in Case A above. By noting in Fig. 15 
the very sharp features of the (essentially exact) species distributions, one can readily 
appreciate the serious consequence that even slight degrees of numerical diffusion or 
Gibbs phenomena would have inflicted upon the proper treatment of the nonlinear 
chemical reaction process. 

Problem 5. Dwyer-Sanders Model Flame. 

Two coupled equations for mass density and temperature have been proposed by 
Dwyer and Sanders [18] to simulate basic features of flame propagation (for 
example, flame propagation in a solid without gas generation? or flame propagation in 
a gas without large heat release). The model equations are 

(52) 

where 

NDA = 3.52 x lo6 exp(--4/T). (54) 

Initial conditions are 

P(& 0) = 1, 
qx, 0) = 0.2, o,<x,< 1. 

(55) 
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L 

t  = 63 

/--- 

FIG. 15. Two counter-streaming square waves-reactive csse. 
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Boundary conditions are 

P,(O, 4 = T,(O, t) = 0, 

P,(L 0 = 0, T( 13 t) = f(t), t>o; 

and the time-dependent forcing function is given by 

(56) 

f(t) = 0.2 + t/(2 x lo-“), t<2 x 1o-4 

= 1.2, t>2x lo-“. 
(57) 

The heat source at the wall (X = 1) simply generates a flame front which propagates 
from right to left at a relatively high speed. The flame front is not nearly as steep, 
however, as the gradients which have been encountered in sample problems discussed 
above. 

Results. This model problem serves as a very useful test example for the 
computation of certain essential mechanisms which occur in more general physical 
flame systems. The MFE solutions for this sample problem were obtained with 11, 
21, 3 1, and 5 1 nodes; essentially identical results were obtained in all runs. 
Figures 16 and 17 present representative results from the 21 node and the 5 1 node 
solutions. Minimum allowable node separations of k, = 10-5, with k, = 10e3 to 
10-2, k, = lo-“, an initial time step of lo-‘, and a local truncation error of lop3 
were used in these runs. By resolving accurately the flame front structures, we note 
that the fame propagates at nearly (but not precisely) constant speeds in the interval 
from t = 0.003 set to t = 0.006 sec. In this interval, the maximum slope magnitudes 
are 57 k 0.5, and the flame front was propagating freely. Flame speeds are derived 
from the precise positions of the amplitude T = 1.0 at many sample points between 

0 " - " ' " . " * '. 3 3 " 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

x 

FIG. 16. MFE solution of sample problem 5 with 21 nodes. 
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FIG. 17. MFE solution of sample problems wkh 51 nodes. 

the times 0.003 set and 0.006 sec. (We have verified that essentially identical results 
are obtained if one uses the amplitude T = 0.5 to derive flame speeds in this same 
interval of time.) The average flame speed in this time interval (t = 0.003 set to 
0.006 set) is 143.7 f 0.8 cm/set, with the fluctuations being associated with transient 
variations in the flame front structure. At times less than 0.003 set and at Limes 
greater than 0.006 set the propagation of the flame front is affected by the presence 
of the boundaries at x = 0 and x = I, respectively. 

For solving this sample problem from t = 0 to t = 0.006 set, the 11 node solution 
required approximately 400 time steps and 4 CPU seconds; the 21 node so;aution 
required 600 steps and 13 CPU seconds; the 31 node solution required 540 steps and 
16 CPU seconds; and the 51 node solution required 570 steps and 30 CPU seconds, 
One finds here (as in previous examples) that, with the benefit of addibicnai 
experience, this sample problem can be solved much more efficiemly than x&as 
indicated in the previous discussion. Also, one finds in this example-m analogy with 
the results which appeared for sample problem 3-that the I1 node solution locates 
the wavefront accurately and has small variances which lie equally above and below 
the corners of the wavefront in the more precise results from the 2 1, 3 1, and 5 1. node 
solutions. 

This example was also solved by the conventional fixed node Finite element method 
(using piecewise linear elements) with 101 fixed nodes; the flame speeds are 
15 1.2 & 3.5 cm/set in the interval t = 0.003 set to t = 0.006 sec. Also in this mterval 
the maximum flame front slopes have values of 54.1 + 2.1, The disparity between the 
fixed and moving node finite element solutions arises from the less accurate 
resolution of the flame front (only four cells define the flame from) in the fixed node 
method, t$s a uis the more accurate flame front resolution. using many more ceils in 
the flame front. in he MFE method. 
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In undertaking a comparison between the MFE results and alternative FD 
methods, we note that Dwyer and Sanders [ 181 initially reported “best flame speed 
values” of 136-141 for this problem. In more recent work which uses more nodes (as 
many as 400) for several finite difference methods and a collocation method, Otey 
and Dwyer [ 191 report “best values” of approximately 141. Agreement between the 
FD and collocation methods and the MFE results are thus converging progressively 
toward the MFE results. We suspect that any remaining discrepancies could be 
related to the fact that the non-linear forcing functions in the PDEs are treated much 
more approximately in the pointwise evaluations of the FD and collocation methods 
than in the MFE method which puts many nodes in the steep front and which 
integrates all such terms exactly on entire spatial elements throughout the problem 
domain. 

The Dwyer-Sanders equations (52) and (53) have also been solved for the alter- 
native value of NDA = 4 X 10’ exp(-4/T), using 11, 3 1 and 5 1 nodes. In this test case 
the maximum slopes of the freely propagating flames are 198 k 6 and the flame speed 
is approximately 484 cm/set. The MFE nodes were observed to compress to actual 
separations of 6 x 10e4 during the solution of this problem, which implies that 
perhaps 2000,. or more, nodes would be required in order to obtain fixed node 
solutions with comparable resolution, The MFE solutions for this case were run to 
the time t = 0.19 in 350 steps, requiring 4 set CPU time with 11 nodes; and 
correspondingly greater times were required with 31 and 5 1 nodes, as was.indicated 
in the discussion above. An attempt to solve this test case with 101 fixed finite 
elements verified that satisfactory solutions could not be obtained with such a limited 
number of fixed nodes. Otey and Dwyer [ 19 ] report flame speeds of 474-477, using 
up to 600 fixed nodes in FD and collocation solutions. We again suspect that the 
alternative fixed node solutions will converge toward the MFE solutions as the 
number of fixed nodes is increased beyond current levels (of 600). 

II. LOOKING AHEAD 

A key question in all PDE work is whether or not a solution method which is 
effective in I-D can be extended with similar success into 2-D applications. In the 
case of classical finite element methods, their forte historically has been in the 
effective resolution of multidimensional applications; and we expect that the MFE 
extension will further enhance the ultimate performance of finite element solution 
methods in 2-D. But beyond such a general statement of expectation, we consider 
explicitly in this section some of the specific properties that appeared in our l- 
D MFE results which should carry over effectively into 2-D applications, as well. 
These properties include: (i) node economies, which will magnify computer savings in 
higher-dimensional applications; (ii) systemetic control of PDE numerical 
integrations, using an intrinsically stable integration method; (iii) high resolution of 
multiple, large gradients which may propagate at dissimilar velocities; (iv) 
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elimination of zone tangling and/or remap aliasing in complex flow fields; and (v) 
non-dedicated programming.6 

Without question, effective node control is the key factor which underlies many of 
these properties. The effectiveness of every adaptive regridding or moving n.ode 
method is determined ultimately by the capacity to locate nodes “in the right place at 
the right time.” By now we have seen that optimally-located nodes may have :o 
satisfy several criteria simultaneously: their movement should be mobile-but in 
some cases not too mobile; the nodes should resolve accurately all significant 
curvatures in simultaneous dependent variables over entire problem domains- 
without wasting too many nodes either in areas of large gradients or in regions with 
small gradients; some nodes should remain sufficiently dispersed to resolve any new 
features (such as shocks or rarefactions) which may develop as a problem progresses; 
and nodes must be able to approach each other very closely (in order to resolve 
shocks and boundary layers simultaneously with larger scale effects in a FTow 
fieldj-but the nodes must not cross in 1-D or tangle the mesh in higher dimensions. 
In 1-D applications we have found that: (i) such numerous and specific crineria can 
be expressed and executed effectively in terms of penalty functions in the MFE 
minimizing equations; and (ii) general users can exercise such node controls on a 
problem-dependent basis by the use of externally-specified control parameters, Fueure 
research will undoubtedly continue to improve the universality of node controlling 
penalty functions. 

Qne of our examples in 1-D serves to illustrate MFE node control properties which 
are essential in extensions to 2-D. This example is the intersecting reactive wave 

problem from Section II, which illustrates the non-tangling, high-resolution properties 
of the MFE nodes. By recalling the discussion (and Fig. 15) in Section II we note 
that, at early times (t < 60), the MFE nodes move with the respective freely 
propagating square waves, very much in a Lagrangian fashion. But it must be 
emphasized that the MFE nodes have not been “attached” to either wave by any sort 
of a coordinate transformation, such as is done in conventional Lagragian 
calculations A moment of truth occurs just prior to t = 60 when the square waves 
are about to intersect. At these times the nodes approach each other very closely 
without crossing. In this central region the MFE solution is now very much Eulerian, 
with the wave forms clearly propagating through the mesh of essentially stationary, 
closely spaced nodes about x = 50. Concurrently, the large gradients at the rear 
portions of the waves for fluids 1 and 2 are being resolved to high accuracy by the 
moving nodes in that region. This example shows that the finite elements contract to 
very small scales in regions of intersecting (and non-intersecting) l.arge gradients and 
then elongate again when fine resolution is no longer required in those regions of -he 
problem domain. Although the ODE system is a stiff system, extremely non-uniform 
grid meshes pose no integration difficulties for implicit, stiffly stable 0 
methods, as is clear from the results which appeared in Section II. 

’ Existing practices of writing new dedicated PDE programs for each new multi-dimensional 
appkation can be unacceptably costly in many practica! circumstances. 
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In 2-D, conceptually similar node behavior must occur simultaneously in the x and 
y coordinates. In contrast to the expanding and contracting interval elements which 
we have observed in l-D, we will see in 2-D a mesh of expanding and contracting 
triangular elements which are calculated at each time-step-in complete analogy to 
the 1-D case-to minimize PDE residuals. In a flexible triangular mesh in 2-D, 
triangles are not permitted to become any ‘ithinner” than a certain user-specified 
minimum separation. With the aid of a few hand-drawn sketches one can readily 
demonstrate that the same principles which yielded the non-tangling, high-resolution 
nodal properties in I-D should apply with similar effectiveness in 2-D. A crucial 
question is whether or not steep profiles with dynamic contours can be resolved 
accurately in 2-D with a practical number of nodes. 

The recent work by Alexander et al. [20, 211 provides a first answer to this 
question. For the Stefan problem (of ice-slush-water transitions [2,20]) their MFE 
solutions in 2-D resolved very efficiently the evolution of simultaneous, steep 
wavefronts which, in fact, pinched together in mid-region as the problem evolved so 
that the ice region (initially dumbbell shaped) eventually severed-thereby changing 
its topological type completely. 

Finally, one is interested in the capacity of a PDE solution method to solve prac- 
tical systems of equations for physically meaningful variables. Again, a first 
indication of this capacity is available for the MFE method. We have solved the gas 
dynamics examples of Sod [22] and have obtained essentially exact results for all 
fluid variables, using fewer than 30 MFE nodes. Although a detailed discussion of 
these (and other) gas dynamics results is deferred to a separate article, we note the 
following points which are pertinent to the present discussion: In addition to 
significant node economies, the MFE time step was found to exceed the CFL 
condition by large factors (of 20 to 100). Very large gradients were resolved with 
high accuracy; in fact, viscous and thermal conductivity terms were incorporated 
with their physical magnitudes which, in turn, generated shock gradients on the order 
of 103. (Highly accurate resolution of these physical scales proves to be very 
beneficial to accurate partioning of internal energy and kinetic energy densities.) 
Lastly, new regularization terms were developed in order to emphasize the migration 
of nodes to all solution regions which contain high curvatures. This feature tends to 
prevent the buildup of nodes in those regions of steep fronts which are essentially 
straight lines; and the growth of such new structures as the shock front and 
rarefaction fan are sensed more effectively by these new penalty functions. This 
development further suggests that alternative penalty functions can be devised to 
satisfy many different types of problem requirements which may be faced by scien- 
tific practitioners in numerous disciplines. 

The DYLA Program 
APPENDIX 

DYLA is an automated general computer program structure which can accom- 
modate numerous PDE solution methods in the same overall package. The solution 
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methods are pre-programmed and users can-by the use of simple inpllr 
commands-seiect not only the partial differential equation system which they wish 
to compile and solve but also the PDE solution method which is to be used. At the 
present time, the DYLA code emphasizes the MFE method; however, in the pasr we 
have experimented with fixed node bilinear finite element methods (that is, the 
approximate solution is piecewise linear in both the space and the time variables) as 
well as centered finite-difference discretization methods 1251 in the DYLA format. 
This general approach to PDE solution is intended to relieve practical users of the 
need to: (i) write a new computer program for the solution of new partial differential 
equation systems; and (ii) alter existing computer programs in order to incorporate 
new finite difference or finite element methods. In the first instance, we note that very 
large programming efforts are often expended in programming new equation systems 
which are in large part identical to those which existed in previous program versions. 
In the second instance of implementing new or revised solution methods, we note that 
exi.sting computer programs are frequently victimized by a cancerous mode of growth 
in which reliability, maintainability, and efficiency decline drastically. The guiding 
philosophy in the construction of DYLA is to automate, as fully as practical 
judgments warrant, every potentially tedious or error-prone action which is required 
in the implementation of a physical modeling code. 

We are, of course, constantly aware of the tenet that computational generality may 
destroy computational efficiency. But in this era of declining computing costs, it is 
now the human practitioner whose efficiency should be enhanced. The DYLA 
program structure permits problem extension, expansion, modification, and, finaily, 
optimization to be made quickly, accurately, and safely. At this time, we have net 
observed any irretrievable loss of efficiency in the DYLA solution program, using the 
MFE method. 

In undertaking the construction of an automatic partial differential equation solver 
which is to be used for modeling physical systems, one can identify the following 
major components: 

(I) A system of time evolving differential equations together with a set of 
initiai and boundary conditions. The differential equations generally contain partial 
differential operators of a few standard forms with a set of parameters that describes 
the physical system of interest. Such PDE systems are usually classified as parabolic 
or hyperbohc. 

(2) Some types of spatial discretization of differential operators for the 
systems of interest. Roughly speaking, in finite element methods one postulates the 
functional space of the approximate solution and thereafter obtains approximations of 
these differential operators acting upon the approximate solution. Alternatively, finite 
difference methods apply local approximations directly to the differential operators., 
per se. (Naturally, the “semi-discrete” continuous-in-time equations which result from 
these two different approaches are generally dissimilar, particularly for no&near 
PDEs.) 
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(3) Time integration of the resulting system of ordinary differential equations. 
Many of the most difficult physical problems require implicit, stiffly stable time 
integration methods. Such methods involve the solution of a large system of algebraic 
equations. We remark that in the MFE method, this system of algebraic equations is 
always nonlinear-even if the physical problem, per se, is linear. 

We now describe more specifically the implementation of these main components 
in DYLA for the MFE method. Later we will note some modifications which would 
be required if one wished to use an alternative spatial discretization scheme in the 
general framework provided by the DYLA concept. 

1. The Differential Equations and Boundary Conditions 

Many automatic PDE solvers are constructed to solve a single specific type of 
differential equation system; e.g., a system of parabolic equations, a system of hyper- 
bolic equations, etc. As may have been apparent in previous sections of this article, 
the DYLA program structure takes a different and more general form. A set of 
various operators which arise in scientific applications are programmed into the 
DYLA structure so that one can construct sets of differential equations by providing 
simple input commands. (Specific examples will be given below.) Therefore, a novel 
feature of DYLA-which became possible to implement via the robust and versatile 
nature of the MFE method-is that parabolic or hyperbolic systems of equations 
seem to be handled with equal facility. (Of course, an elliptic problem might be 
handled as the steady state case of a corresponding parabolic problem, but in many 
cases this may not be as efficient as other alternatives in terms of CPU time.) 

As for boundary conditions, DYLA is currently programmed so that Dirichlet and 
zero-Neumann boundary conditions can be assigned. Zero-Neumann boundary 
conditions are replaced, as usual, by corresponding symmetry conditions. Non-zero- 
Neumann and mixed boundary conditions will be tested in future work. 

2. Spatial Approximation Methods 

In implementing the piecewise linear MFE method, a first step which must be 
taken is the evaluation of some inner products which involve only basis functions. 
These inner products enter only in the mass matrix J? in the equation (See Eq. (31) 
of Section I) 

J&=2. (AlI 

The following results are readily obtained: 

(q, CQ) = d Asi, 

= +(As~ + ASi+ I), 

= { Asi+ 1, 

j=i- 1 

j=i 

j=i+ 1, 
642) 
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(q, pj, = - ; AUi, j=i- j 

= - !(AUi + AU,+ I), j=f (43) 

=- iAai+,> j=i+ 1, 

(pi. pj) = fmi Aai, j=i- 1 

=;(miAai+mi;,Aai+,j, j=i (A/;) 

=bmi+lAai+,, ~j=ii 1. 

The remaining inner products which appear on the right-hand side of Eq. (Al) are 
problem-dependent. We give below the values of numerous inner products which were 
encountered in the examples in this article:’ 

where 

Q1 = Aa;(faf - ; Aof). \A’ i I - - 1‘ 

Q, = Auf+ ,(;uf + d Auf, I). ( -4 “1 2 ) 

Because j3J.z) = --miai(~) on the ith cell and pi(x) = --nzi+ ,ui(,.~) on the (i + l)st ceh, 
the relationships (A9) and (AIO) between the inner products (ai, L(Ll)j and (pi, L(v)) 
carry over for many operators L(U). Henceforth, the values of the inner products 
6Ji, i(v)) will not be written when the relationship in Eq. (-49) and (aLlO) holds for 
some Q, and Q,. 

(iv) 

’ Except for inner products of basis functions with second-order derivatives. the derivations i?! h-se 
quantities are straightforward. 
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Q, = T (~$a; + ;Aaf An; - &~fAa; + a; Auf)), 

Q,=+L (a$+ a: + ;Aaf, , Aa?, I + $(uf Aa:+ 1 + al Aa!+ J). 

(VI L(o) = f-w, where # is some decent function, 

(ai> -Vu)) = Q, + Qz, 

where 

Q, = d(af) - ,f q&zf - Aaf ;) dz, 
0 

Q2 = +(af) + f #(at + Aat+ 1 z) dz. 
0 

(‘418) 

W9) 

WV 

6421) 

(A221 

(A23) 

In general, the integrals in Eqs. (A22) and (A23) are evaluated by numerical 
quadratures for arbitrary functions 4. 

For each of the “primitive” operators in (i) through (v), there is a subroutine in 
DYLA which calculates the corresponding inner products and loads these values 
appropriately in the array 9. In order to give an example showing how this is done, 
we first refer the reader to Table I, which contains a list of all operators in (i) through 
(v), as well as other operators which are currently implemented in DYLA. Note that, 
in Table I, the “problem variables” of the approximate solution vector v (i.e., the 
component functions v’) are denoted by J; g, h, etc. The indices NF, NG, and NH 
denote that I = NF, NG, and NH, respectively, for the component functions f, g, and 
h. The generic coefficient K is a constant, independent of X, whereas Q is either an 
explicit or an implicit function of all other problem variables. The parameter LPDE 
is a pointer to the PDE containing the differential operator which is being loaded into 

k 
To illustrate the operation of DYLA, we can consider the previous two-reactive 

wave example, written in slightly different notation (than in the text) as: 

(A24a) 

(A24b) 

We start by ordering our solution vector as (f, g) and thus the indices off and g are 
given by 1 and 2, respectively. In order to load the right-hand side of Eq. (A24a), we 
note first that LPDE = 1; so to load the operator - (1/2)(8/8x) acting on the 
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problem variable f, whose index NF = 1, we simply dial subroutine DFDX by the 
call statement (see Table I): 

CALL DFDX(NF, LPDE, -0.5). 

TABLE I 

Library of Some Differential Operators for the MFE Method in DYLA 

L(o) 

Subroutine name 
and argument Comments 

(I ) K Zf/c?x DFDX(NF, LPDE, K) e It is assumed that the problem variabies g 

(2) K(a/Ylx)(f’/Jg) DFZOGDX(NF, NG, LPDE, Kj ( or h) appearing in any denominator are 

(3) K(L@x)if3/g*) DF30G2(NF, NG, LPDE, K) 
bounded away from zero. 

(4) K(%/&)(f x g/h) DFGOHDX(NF, NG, NH, L- 
0 Note that the operator in (1 j through (5) 

PDE, K) 
can be used to generate the gas dynamics 
eauations in conservation form. 

(5) Ki;‘f/6x’ 
(0) Kf%g/Ex 

(7) KS 
(81 Kf xg 
(9)Kfxgxi: 

D2FDXZ(NF, LPDE, K) @ Using (5) and (6) one can diai Burger’s 
FDGDX(NF, NG, LPDE, K) equation. 

KF(NF, LPDE, K) 0 Using (i) and (8) one can dial the two- 

KFG(NF, NG, LPDE, K) reactive wave problem. 

KFGH(NF, NG, NH, LPDE, Kj @ Note that a11 inner products in (:) 
through (9) and all inner products in the 
associated Jacobians are evaluated 
analytically. For the operators in (lQt( I g) 
below. all such inner products are evaluated 
by numerical quadrature. 

Specific operators for fluid dynamics applications 

0 Q is some external function in one problem variable. 

8 In (ll), (12) and (13), Q is expected to be an Arrhenius type 
coefficient, which is a function of temperature. which in turn 
function of all problem variables. 

p = pressure 

yi = number density of ith chemical species 

Vi = peculiar velocity of ith chemical species (i.e.. 
the statisticaily fluctuating component) 

hi = enthalpy of ith chemical species 

m I fluid momentum, p = fluid mass density 

I = thermal conductivity, or diffusion zoeffieient 

T = temperature 

rate 
is a 
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In order to load the second term, -fg, we note that NG = 2; we thus need to dial 
subroutine KFG by the call statement: 

CALL KFG(NF, NG, LPDE, -0.1) 

This completes the loading of Eq. (A24a). 
Analogously, we load the second equation, LPDE = 2. To summarize, the right- 

hand side of Eqs. (A24) is loaded into 2 as follows:8 

Load the jkst equation: 

CALL DFDX(I, 1, -0.5) 

CALL KFG(l,2, 1, -1.). 

Load the second equation: 
CALL DFDX(2, 2,0.5) 

CALL KFG( 1, 2, 2, -1.). 

As a second example, let us consider the one-dimensional gas dynamics equations 
in conservation form: 

pr=-m x: (A25a) 

(A25c) 

where p, m, and E are, respectively, mass density, momentum, and total energy per 
unit volume. The parameters v and v’ (assumed to be equal henceforth) are viscosity 
and thermal conduction coefficients which are assigned physical magnitudes. The 
pressure p for an ideal gas is given by the equation of state 

p=(?J- I,(+$-)), 

where y is the ratio of specific heats. Assuming that 1’ is constant, the substitution of 
p into Eq. (A25) gives 

pt=-m x3 (A27a) 

m, = -CC3 - ~~)/Wm*/p), - (Y - l)E, + vmxx, (A27b) 

4 = -WUPPL + NY - 1 Y2)(m3/p2L + v-5,. (A27c) 

‘These call statements are contained in a user-written (problem-dependent) subroutine; and, except 
for analytic Jacobian options or input-output requirements, the DYLA program operates with essentially 
no further user interfacing. 



THE MOVING FINITE ELEMENT METHOD 247 

By assigning the indices 1, 2, and 3 to the variables p, M. and E, respectively, the 
right-hand side of Eq. (A27) is loaded into 9 through the following lines of coding 
(See Table I): 

Load Eq. (A27a): 

CALL DFDX( 1,l. - 1.). 

Load Eq. (A27b): 

CALL DF2OGDX(2, 1, 2, -(3 - y)j2). 

CALL DFDX(3,2, -(y - i)), 

CALL D2FDX2(2, 2: v). 

Load Eq. (A27c): 

CALL DFGOHDX(2,3, 1,3, -yj 

CALL DF30G2(2, l? 3: (y - 1)/2): 

CALL D2FDX2(3, 3, v)~ 

This concept of automated dialing and subsequent loading of partial differential 
equations can be implemented for a variety of different spatial approximation 
methods. Accordingly, DYLA could be extended to contain several different PDE 
solution methods; and one could then select a particular solution method via a simple 
method flag designator-much as is done in such automatic ODE solution packages 
as EPISODE [5]. 

One example would be to implement a fixed node piecewise linear finite element 
method. The ODES for such a method can be obtained by merely eliminating the sj(,‘) 
from the set of unknowns in the solution vector y(t) and all inner products involving 
the basis function /?i from the mass matrix S?(J) and from the vector valued function 

P(Y). 
A second example might be to implement a central finite difference approximation 

on a uniform grid with node spacing h. The basic biock tridiagonal structure of the 
resulting ODES would not be changed; and the same implicit stiff 
program, as well as the same “dial an operator” input logic, can al 

3. Time Integration of a System of ODEs 

The ODE system which is solved in Eq. (Al j is frequently stiff because of the 
extreme non-uniformity in the distribution of nodal spacings, We therefore must use 
an implicit stiffly stable ODE solver in order to obtain accurate numerical solutions 
with economical time-steps. Currently DYLA uses Gear’s implicit stiffly stable 
methods of order 1 through 5, as implemented in the well-documented GEARI 
package by Hindmarsh [23,24]. After some adaptations and modifications, this 
package integrated readily all of the examples which appeared in this article. Two 
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specific modifications which were essential to solving the system of Eq. (Al) are (i) 
the derivative (with respect to y) of the mass matrix &? must be evaluated in 
calculating the Jacobian in DYLA, whereas these derivatives were discarded in 
GEARIB, and (ii) additional error control norms on the nodal spacings, ds,, were 
included in the ODE solutions in DYLA. Finally, the reader may note that we have 
also tested the A-stable, second-order diagonally implicit Runge-Kutta method 
DIRK2 [ 1 ] for solving the ODE systems in DYLA. We found that, due to a lack of 
code optimization of the DIRKZ method, the GEARIB package currently yields a 
somewhat greater computational economy. 
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